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Abstract. The variational wave function proposed by Bartkowski-to treat the ground state of a
quantum aptiferromagnet is generalized to arbitrary spin, We derive the fundamental equations
- of this method for the energy and magnetization by using a local cluster expansion. The leading
order corrections to the wave funiction in the limit of either large spin § or lattice dimension D
“are identified. The good quality of the wave funcliori is confirmed by the ground state energy
" of Eg = ~0.3340J obtained for the Heisenberg § = 1 antiferromagnet on the square lattice.
We present results obtained for the system of two planes and for three-dimensional sc and Bce
lattices, as well as for the three-dimensiona! anisotropic Heisenberg model. It is found that the
quantum fluctuations in a two-plane system are already closer to a three-dimensional than to
a two-dimensional antiferromagnet, while a weak interplane coupling i in the Ialter case hardly
mﬂuences the nearest-ne;ghbour spm correlations within the planes.

' 1 Introductmn

- The discovery of h1gh~temperature superconductors thh their two-dimensional (2D) CuO,
planes, which exhibit a quasi-2p antiferromagnetic (AF) order in the undoped systems
[1,2} caused a renewed interest in the 2D Heisenberg model. It is well known that
the model is exactly solvable in one dimension, with the exact ground state energy of
- —0.4419J per bond [3], where J is the exchange interaction, and exhibits no.AF long-
range order. While the existence of the AF long-range order in a three-dimensional (3D)
system was proved rigorously by Kennedy, Lieb and Shastry {4], the issue was controversial

for a 2D system due to the theorem of Memmin and Wagner [5]. Numerous studies
" undertaken recently by various powerful analytic and numerical methods have demonstrated
that the long-range AF order exists' in a 2D Heisenberg model at temperature T = 0
[6). Although there is no exact solution in two dimensions, the calculations performed
within the Green function Monte Carlo method provided a very accurate estimate for the
ground state energy.of —(0.3347 & 0.0002}J per bond [7-9]. This result’is consistent
with the energy of —(0.334 £ 0.001)J obtained by Huse [10] from the series expansion
derived earlier by Parrinello and Arai [11], as well as with the more accurate estimation of
- —{0.3348 £ 0.0003)J found recently by Singh [12] from the expansion:around the Ising

limit. Similar, but slightly higher values of energy were obtained by various analytic and
- numerical methods [6]. We will not attempt to improve these results for the 2D Heisenberg
- model, but instead we want to present a simple variational approach that gives results of
comparable quality. Its conceptnal and numerical simplicity allows us to estimate the energy

0§53-8984]93f448403+14$07.50 © 1993 [OP Publishing Ltd ' 8403
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of Heisenberg antiferromagnets on different lattices in a very fast and efficient way, as we
demonstrate below.

Numerical methods usually give little insight into the nature of the ground state wave
function and the way it could be treated approximately in an analytic approach. Therefore,
analytic, and in particular’ variational, approaches are very useful as they allow not only
for a more transparent description of the Heisenberg magnets, but also contribute to better
understanding of the nature and role played there by quantum fluctuations. The conceptually
simplest approach starts from the spin density wave solution of the Hubbard model, which is
variationally improved with the help of the Gutzwiller ansazz [13]. The energy obtained in
this way. by Yokoyama and Shiba [13] of —0.321J lies well above the other estimates
as this variational ansatz implements only the local constraint and neglects the short-
range correlations. They are included in two variational wave functions widely used for a
Heisenberg antiferromagnet. The first of them, proposed by Marshall in 1955 [14], focuses
on the statistical distribution of spins over the lattice and optimizes the distance dependence
of the spin-spin correlation function (87 57) {14-16]. It gives a rigorous variational upper
bound for the ground state energy of a 2D antiferomagnet of —0.3319J {15]. The second
wave function was proposed by Bartkowski in 1972 [17]. It implements the quantum
fluctuations on the bonds in the classical Néel state. Unfortunately, it was claimed in the
original paper that it gives a ground state energy only of —0.329J per bond which is certainly
worse than any other approach to the Heisenberg Hamiltonian that includes the quantum
fluctuations, except perhaps for the lowest-order spin wave theory resuit [18]. Therefore, the
Bartkowski wave function was neglected for a long time until one of us demonstrated that
the quality of this wave function is de facto much better {19], provided that the fully self-
consistent minimization of the obtained expression for the ground state energy is performed.
The method proposed originally by Bartkowski then gives the energy of —0.3320J [19]
instead of —0.329.J [17]. Therefore, we use this wave function in the present contribution
as a conceptually simple method to investigate the quantum fluctuations in the following
systems: (i) diamond lattices in D dimensions; (ii) the anisotropic Heisenberg model in
two and three dimensions, 3D and for the system of two planes; and, finally, (iii) for the

anisotropic 3D Heisenberg model with a weaker exchange interaction between the 2D planes
than within them.

2. The variational wave function and the calculation method

In order to demonstrate the role of quantum fluctuations in the reduction of the ground state
energy we consider the anisotropic Heisenberg model on bipartite lattices

Hy=1J %;(5(5?‘5;“ +5757) + st;) | (1
; _
where J is the exchange interaction between the nearest-neighbour spins S, and the
anisotropy parameter y stands for the ratio of the exchange parameters in the quantum
fluctuation, i.e. ~ (S+S‘ + S“S"’) part, and in the Ising part, respectively. The Hamiltonian
(1) gives the Ising and. Heisenberg Hamiltonians for y = 0 and 1, respectively. The classma]
ground state of (1), which becomes exact in the Ising limit, is the Néel state

lw = [Taf To) 0 - )]

fEA JjeB

written here by usiﬁg fermion creation operators, a;rT and aIL for the sublattices A and

B, tespectively. Bartkowski’s idea was to correct this classical state by aliowing for the
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reversals of pairs of the nearest-neighbour spins, i.e. two spins terminating a patticular bond
in the lattice. The variational wave function is therefore of the form [17] E

; . 28

, o 878,
= bt ol 3
o) eﬂ@ ( 55 ) o) | 3)
where i -+ §(i) stands for a neighbour of ,site {. This wave function may be used for any
spin S, as the 25 factors (I'+ &S S5, ;/28) for each bond allow us to completely feverse
thé spins. In the original wave function [17] 6hly one siich factor per bofid was ificluded
which allows for 2 single quantum fluctuation 4nd is therefore appropriate only for S = %
- In the apphcatmns of the wave function (3) we shall limit ourselves to the miost interesting
caseof S =1

The vanauonal parameter o has to be dctermmed from the mmumzatlon of the ground
state energy

- (¢ol J|¢u)_ (4)

{oldo)
"It may be easily verified that the wave function (3) reproduces the exact singlet wave
function fof a pair of spins 5= 5 with the choice of @ = 1- [19]. Thé form of this

wave function (3) reseriibles the Gutzwiller ansatz for the Hubbard model {20]. - Both
wave functions emphasize local ¢orrelations of certain kind, but the latter wave. func'uon
-implements the correlatioiis in 4 Slater determinant, while the former implements quantum
fluctuaticns into the classical AF state of (a]ready) Iocahzed fermions. As for the Gutzwilier
wave function, in the presefit case one may also ‘propose a combinatorial way of calculating
various averagé quantities [17,21]. We have chosen td use a certain generalization of the
original approximate method as proposed by Bar'rkowskx Wthh is based on a local cluster
expansion [19]. -

.In order t calculate the energy of the ground state, one has io evaluate the ground
state energy Ep which could be calculated exactly frofii equatioir {4) only for smiall finite
-clusters. As for the irifinite system the exact evaluauon of its enefgy is not possible, one
includes only the connected diagrams up to a g1ven order in thé variational parameter o,
~ and evaluates the energy per bond accordmg to the formula '
(¢o|(r/2)(s+s + 85 57) + S5Sildole ®

- “Adaldore - :
where (0, a) is an arbltrary bond and €. means that only connected dlagrams are mcluded

" in the numerator and the denominator of equatmn (5). The quantum fluctuations, ~ 87" S'*' :
which resuit from the expansicm ‘of {| and |¢o}, are represented there as lines i ina connected
diagram. Of course, the energy calculated in this way is not exact for the wave function (3)
used and thus equation (5) hés to be treated as a variational ansatz. In the costribition from
the (0, @) bond one includes explicitly the quantum Auctuations of the spins at sites O and a.
In contrast, the quantum fluctuations on the neighbouring sites are only paftially included,
ie. only for those bonds that connect this site with the central sites 0 or a. Therefore,
one encounters the- problem of how to include the effect of quantum - fluctuations on those
~ {outside) bonds not explicitly treated within the performed cluster expansion, i.e. how the
considered cluster should be embedded in order to simulate an infinite system. Consider
a'bond (0, a) for which the energy is calculated according to equation (4). The bonds
not treated explicitly by the included quantum fluctuations reduce the probability that these
quantum fluctuations can occur and that any of the considered diagrams is successfully
completed. This effect may be included in a statistical way by introducing a probability

"Ey =
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P that a particular spin is already reversed due to the other (z — 1) outside bonds [17]. It

is related to the probability @ that any spin in the lattice is not affected by the quantum
fluctuations at all z bonds,

pr=g*" ©)

where z is the number of nearest neighbours in the considered lattice. By construction, the
latter probability is related to the local reduction of staggered magnetization due to quantum
fluctuations. For a general spin S one finds that

(55 = ”+%—1 0

which generalizes the respective relation given by Bartkowski for § = — [17]. Thus, one
needs the probability P (or Q) in order to perform the minimization of the ground state
energy, Eg. This probability thay be determined from the equation for the average magnetic

moment, {57}, calculated again by makmg use of the linked cluster theorem (here we assume
that site 0 € A)

(53 = olS5l

- 8
Boldols - ®

Again, equation (8) is an ansatz consistent with the expansion (5) performed for the ground
state energy. In the linked cluster expansion one finds that the contributions to the matrix
elements (¢o|35|¢'0) and {¢olgho} come either from self-retracing paths, or from closed loops
(if such loops exist in the considered lattice). Examples of such closed loops in a 2D system

were given in [19], and more deta:ls are gwen in the appendix. By the evaluation of these
matrix elements one finds for § = -

n
{85) = (s:; + 20%(S5 — 1)P + zK (S5 — 1) Z ek sz-s)
k=2

n
X (l +za*P +:2K Zczkaz"P”‘g'). ©
E=2

Here §f is the average magnetization in the Néel state |yn}, while X is the number of
non-equivalent closed loops of length four bonds, built around a single bond, as introduced
in the appendix. Finally, co, are the combinatorial coefficients that express the number of
non-equivalent loops built by » bonds. By definition ¢4 = 1, while ¢ =3, 6, and 9 fora
20 square lattice, the system consisting of itwo parallel planes, and for both 3D lattices (SC
and BCC), respectively. We have also used below ¢z = 10 for the 2D square lattice, By
combining (6), (7}, and (9), one finds the following equation for P, which we reproduce
here only for § = 1

n
p/t=h (1 +20’P+2K Y cyo™ PZH) =1. (10)
=

This may be solved for any given value of o Equation (10) reproduces the respective

condition for P used by Bartkowski [17], if the contribution from closed loops is neglected,
ie at K =0,

The next step is the calculation of energy from equation (5). The structure of the

contributions from the Ising part of the Heisenberg Hamiltonian (1) is different from that of

the contributions that resuit from a quantum fluctuation ~ Sy S} on the considered bond (0-

a). As the quantum fluctuations in {(¢|Hs|¢h)c must be compensated pairwise, in the first
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case one has to include an even number of qtiantum fluctuations from the wave functions
{¢o] and |¢p}, while this number has to be odd in one of these wave functions in the second
case, _As a result one finds (see the appendix for more details) that

1 4+a?[1 = 2(z — DP] +a*(z — )2 P? — 4y + (@ —day)KW

Ep= " 11
Ty 1+0[1+2(z — DP]+ot(z — 2PT+a?KW (1)
where ' '
n ’ - -
W =K) cya®2pE2, : - : (12)
k=2 . -

Next, the ground state energy Eg has to be minimized with respect to the value of the
variational parameter «. In the limit of low density of spin deviations from the Néel state,
i.e. if the quantum fluctnations are independent of each other, one finds for an AF Helsenberg
model w1th spin § that [17]

o=—§/@Sz—1). » (13)

~ 'This value of a, obtained from £, by taking only the contributions up to ~ ¢ and assuming
that P = 1, may be considered to be the lowest-order approximation; the improved value
of & may be found by numerical minimization of the energy Eq, as given by equation (11).
This minimization procedure has to be performed self-consistently with equation (10), which
gives the value of P for a given «. More detalls concemmg the denvatlon of (10) and (11)
may be found in [17] and [19].

Once the values of o and P are known, one may calculate the order parameter (7} and -
the ground state energy E;. We have quantlﬁed the quantum correction to the classical (or
mean field) ground state energy of an § = — antiferromagnet, Eye = —J /4, by

Emp — Ep
[ Emrl ~ — ,
The variational wave function (3) also allows for the calculation of the nearest-neighbour

-correlation function (S7S53}, which provides information about the short-range order in the

ground state. By using the same local cluster expansxon as for the calculation of energy
(11) one finds that :

5= (14)

1 14021 — 20 — DP) + 04z — 1)2P2 + o’ KW

4 1+a2[142(z— 1)P] +eat(z — 1)2P?+a2KW
In section 3 we present the numerical results for the § = - AF Helsenberg model defined
on several lattices, -

In a similar way we mvesngated an anisotropic 3D cubic lattice with stronger exchange
interaction J) in the planes, and weaker interaction J; between them, described by the
Hamiltonian of l:he form

H= 4y (Z)( S:;SHJ' +S S+)+SZES;j) -
niij

(S185) = —

15)

+J'LZ( ﬁ+1! +S—Sn+1 :)+S;1S;+l :) S (16)

It is convenient to introduce the anisotropy parameter § ='J, /J; and label the spin'operators
Sni by two indices, the plane index n and the intra-plane index i. The variational wave
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function for the anisotropic system described by the Hamiltonian (16) may be constructed
by generalizing equation (3),

Sn-is;z_i+8 = Sm Sn+ﬂ 4 2
o= [T {1+e2522)  TT (1+57522) w (i7)
{niyeA plny

(n)eA 8

where [, i + 8(i)] stands for a neighbour of site (%, {) in the plane n and {n+ p(k),i] is a
neighbour of site (n, [) in the plane above or below the plane n. This wave function may
be in principle used for any spin S, but we consider it here only for S =  as in this case
the quantum fluctuations are largest and this value of § is relevant for highly anisotropic
exchange interactions in the high temperature superconductors.

Although the wave function (17) depends formally on two variational parameteis, we
adopted an ansatz that 8 = £a. It may be easily verified that this ansarz includes the
leading part of the energy gain resulting from the interplane quantum fluctuations and is
consistent with the expansion performed in powers of «. It is then straightforward to derive
the equations for {S;) and Ep by using the same expansion as described in the appendix.
One finds that the probability £ is found from the condition

prafEe (] 4 50?P +z) B2P
+yKate? + 28 PP (1 + 622 P2 + 3521’2)1 =1. (18)

Bere the number of nearest neighbours in the plane and in the neighbouring planes is
=4 and zy = 2, respectively, and the effective number of nearest neighbours is defined

as zer = z + &z,. The energy of the ground state per one bond in the plane is found from
the formula

;o 1SS + 35S + 55801 | e
{0 | do)e

where from a similar local cluster expansion to that described before one finds up to order
~ @ the following matrix elements:

(o | SESh; | dode = —3{1 + &®[1 —2(z) — NP1 —28%z, P

Ey= (i9)

+ Pz~ 1)+ ﬁzulsz (20)
+ oo + FHK PP (1 + 62 P2 4 3521’2) }
(b0 1 3(S5ST + 58 L e = —all + (@ -+ BHK P2(1 + 627 P + 37 P%)} @n
o | do)e = 1 + (1 — 2z — DPI —26%2, P + [a?(z — 1) + B2, 1P |
402+ BHK P+ 602 P2 +382PY), _ (22)

The minimization of Ep (equation (19)) over & has to be performed self-consistently with
the solution of equation (18) for P, where 0 < P < 1. With the known variational
parameters o« and § and the probability P we find the magnetization in the anisotropic
system (15} from the equation analogous to (6), but with the replacement z — zeg. Finally,
the nearest-neighbour spin-spin cormrelation function is obtained from (20} and (22),

{do | 5555 | dode
(¢0 I éﬂ?c '

(Spi ey} = (23)



Quantum fluctuations in antiferromagnets = ' 2400

3. Numerical results

Before presenting the numerical results, let us consider the limits of either S — 00, Or
z = 00. In both cases we are interested only in leading order corrections and thus it is
sufficient to limit oneself to the terms of order ~ o2, One finds that for large §

P :1_—_4-2_—11 : . (24)

4z+18
while for large z
i1 - '
P2l ——. '
228 +1) z @5)

The expansion for large § is of less significance as it is meaningful only for §> 1. The
region of vahdlty of the expansion for large z is much broader. In fact, it extends down to
z > 4 for § = 5. This can be demonstrated by minimizing the energy for a D-dimensional
diamond latuoe withz=D+1and K =0,
E J 1 +a2(1 —2DP) +a*D?P? — 4ya
T T T T+ (1 +2DP) + A D2PE ,
for the value of P given by equation (25) For the 3D diamond latnce (D=3,z=4)one
finds from a self-consistent solution of equations (10) and (11) the value of P = 0.934, while
from equation (25) one finds P = 0.953. The detailed comparison of the numerical results
for the comelation function {S$7S3) and the quantum correction 3 to the ground state energy,
as defined by equation (14), obtained in the diamond lattices is given in table I. They are
compared with the results found by using the expansion for large z in figure 1. As expected,
the correlation function {S7S3) converges to the classical limit of {$}S3}sing = ~—0.25 as
z = co0. Forthermore, for z > 4 (i.e. D > 3) the results of numerical minimization
are practically indistinguishable from the analytic results obtained from the expansion (see
figure 1). Significant corrections, both in (583} and &, are found only for the hexagonal
lattice (z = 3) and for the one-dimensional (1D) chain {z = 2). The quantum corrections
to & the ground state energy are considerably larger there than those resuiting from the
large z expansion, while the short-range order, measured by the correlation function {522},
is reduced less than expected from the expansion. This may be seen as a signal that the
quantum corrections to the ground state energy increase, whereas the short-range -order
remains well preserved, as known from the exact solution of the 1D Heisenberg chain [3]

(26)

- -Table 1. Variational parameter c, ground state energy £g per bond (in vnits of J) and the
quantum. correction & to the ground state energy ((11), (12)), magnetic moment {S]), and
correlation” function (SfS;). as obtained for diamond lattices in D dimensions. z = D +1
is the number of nearest neighbours.

‘? ‘

z - e P E 3 (8 = (SisD)
1 © 2 —03824 08907 —04271 07085 0.2933 -0.1585
2 3 02285 09146 —0.3562 0.4248- 03747 01737
3 4 —01599 09339 -—0.3252 03008 04128 -—0.1890
4 5 -01221 095469 03080 02321 04341 -0.2001
5 6 -0.0984. 09559 --0.2972 0.1888 0.4474 -0.2081
6 7 —00825 09623 -0.2898 0.1590 " 0.4562 -0.2138 -
7 £ —00705 09672 —0.2843 0.1373  0.4626 -0.2183
9. 10

—-0.0553 09739 —02770 01078 0471 -0.2246
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Figure [. The quantum correction & to the ground state
energy and the nearest-neighbour comelation function
{§785), as defimed in equations {(14) and (13), for

diamond lattices as functions of 1/z.

Figure 2. Quantum comections § to the ground state
- energy in the anisotropic Heisenberg model as functions
of the anisotropy parameter y. Full, dashed-dotted, and

dashed lines are for the 2D square lattice, the two-plane
system, and the 3p SC lattice, respectively.

Table 2. Variational parameter o, gronnd state energy Ep per bond (in units of /), the quantum
correction & to the ground state energy magnetic moment {57}, and correlation function (8§ 83},
as obtained for the isotropic antiferromagnesic Heisenberg model for a 2p square lattice, in the
successive approxirnations within the local cluster expansion.

o Ep i) (S (S382)
Bankowski method  —0.1866 —-03320  0.3281 0.3874 -0.1724
Order ~ or* —-0.1926 —-0.3328 0.3313 03757 -0.1695
Qrder ~ o —-0.2010 —-03338 03330 03656 -0.1646
Order ~ o ~02032 -0.3339 03356 03629 -0.1632
Extrapolation to ¢ —02036 -0.3340 (03358 0.3622 —0.1628

As a second application of the wave function (3) we have performed the calculations
of the ground state energy Eo, magnetization {S7), and the nearest-neighbour cormrelation
function {8{53) for the anisotropic Heisenberg model (1) on a 2D square lattice, the system
consisting of two planes, and a 3D SC lattice. First, let us consider the case of isotropic
exchange interaction. The values of energy Ep and magnetization (Sj} obtained for a
2D square lattice in different orders in «, and presented in table 2, are encouraging. We
note that solving self-consistently equations (25) and (32) given by Bartkowski in [17]
results in a significantly better result than that originally reported, with Ey = —0.3320J
and {(S7) = 0.387 [19]. By making an expansion up to the ¢ighth order in the variational
parameter o we were able to decrease the energy down to —0.3339J, while the value of {Sf}
decreases down to (1,3629. As observed in table 2, the series converges very rapidly and
gives the estimated values of the energy, Ey = —0.3340J and magnetization, {57} = 0.3626
for the infinite system. The value of energy obtained in this case is of very good quality
indeed, It lies below the rigorous variational upper bound cbtained from the other variational
wave function by Huse and Elser [16] and is also better than the valus of Eq = —0.3317J
found by Sachdev [22] by using a different expansion. Therefore, our ground state energy
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functions {§¢ §%} in the anisotropic Heisenberg model as
functions of the anisotropy parameter y. The meanings
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is thc lowcst upper bound amoeng existing variational calculations with a single variational
‘parametes. Among various analytic approaches applied so far 10 the AF 2D square lattice,
" a lower value of energy than the one found here, Eq = —0.3348/, has been obtained only
by Singh from the expansion around the Ising limit [12].

Table 3. Results for the variational parameter o, ground state energy £¢ per bond (in units of

£}, the quantwm correction & to the ground state energy magnetic moment {87}, and correlation

function {$3%}, as obtained in the expansion up to o for the isotropic antiferromagnetic

Heisenberg model for a 2o square lattice, two planes with the same inter- and intra-planar

) exchange interaction, $C and BCC lattices. z is the number of nearest ne;ghbours and X is the
" number of non-equivalent closed loops, as defined in the text,

Lattice z K a - P By 8 (57) (8782)
Square 4 2 -02010 08955 —0.3338  0.3350 03656  —0.1646
Two planes 5 3 =0.1503 09195 -0.3142 0.2566 - 04004  —0.1806
se 6 4 —p1171 09370  —0.3015 0.2061 04249 —0.1940
BOC 8 09348  —02901  0.1605 04258  —0.1946

12 —0.0983-

A similar quality of the calculated ground state energies is expected for the two-plane
" system and for a 3D SC lattice (see table 3). One observes that the reduction of the ground
state energy due to quantum fluctuations in the two-plane system is qualitatively half way
between those found in the 2D and 3D lattices. Contrary to the naive intuition, we observe
that for the fixed dimension D the lattices with a higher coordination number have lower
decrease of the ground state energy due to the quantum fiuctuations on the -bonds, and the
largest energy correction due to quantum fluctuations 3 is found in the diamond lattices.
For instance, for 2 = 3 one finds § = 0.301, 0.206 and 0.161 for the diamond, SC and
BCC lattice, respectively (see tables 1 and 3). The reason for this behaviour is the presence
of the closed loops for the two latter lattices. They increase the number of diagrams that
have to be considered in the expansion, each giving the same energy contribution as in the
Néel state (for § = 1) In other words, the quantum fluctuations become interrelated in
the lattices with the c]osed loops and thus their contribution to the ground state energy is
reduced.
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The results obtained for the ground state energy reduction &, the order parameter (S7),
and the nearest-neighbour correlation function (§7S$3) for the anisotropic Heisenberg model
(1} are presented in figures 2—4. The corrections to all these quantities are of the order
of ~ y? close to the Ising limit, with the coefficients dependent on the dimension of the
lattice. By comparing the calculated energies and the correlation functions we observe
that two planes coupled by an exchange interaction exhibit quantum fluctuations strongly
reduced from those found for a single plane. In fact, the two-plane system is found to he
somewhat closer to the 3b SC lattice than to the 2D square lattice.

o3sF ' Jo4s R I

5 (ST —(S3S%yi
0.30 0.40

0.16

0.25 0.35

interplgne

0.20—- 0.30 12—ttt

0 0.5 é 1 0 05 g 1
Figure 5. Quantum corrections & to the ground state  Figure 6. Spin-spin nearest-neighbour correlation
energies and the order parameter (S7} in the anisoropic  functions (S} §7) in the anisotropic system described by
system described by the Heisenberg model as functions  the Heisenberg model as function £ of the amisotropy

of the anisotropy & in the exchange interactions ina3p  in the exchange interactions in a 3p lattice.
lattice.

Finally, we considered a 3D system with an anisotropic exchange interaction, as defined
in equation (16). As for the cases discussed above, we have solved self-consistently
equations (18) and (19) by 2 numerical minimization of the cnergy Eg over a single
variational parameter &. It has been found that a small interplane exchange interaction
Jy has almost no effect on the in plane properties, such as the energy per bond, the average
magnetization (57}, and the nearest-neighbour correlation function {S§7,S? ;) (see figures 5
and 6). Thus the system with £ = J, /J; < 0.1 remains practically equivalent to a 2D
Heisenberg antiferromagnet. The quantities displayed in figures 5 and 6 start to change
faster only for § =~ 0.2 and gradually approach the limit of a 3D antiferromagnet on an SC
lattice as § — 1. The interplane correlation function (S;;S7 ., ;) always has a lower value
than that in the plane, as the independent quantum fluctuations within both planes weaken
the spin order on the vertical bonds more efficiently. '

4. Summary and conclusions

The results obtained in the previous section demonstrate that the variational wave function
originally proposed by Bartkowski [17] is well designed for estimating the ground state
energy of models of interacting spins on different lattices. It captures the essential part of
the quantum fluctuations that, in the leading order, occur on the bonds between the nearest
neighbours. The expansion obtained in the variational parameter converges rapidly and
gives the estimated energy of the infinite 2D square lattice Ep = —0.3340J per bond, being
higher only by less than 0.3% than that obtained from the Green function Monte Carlo
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method, Eq ~ —(.3347/ per bond [7-9]. It is not easy to come close to this number
by using analytic methods. Furthermore, the obtained- energy agrees quite well with that,
Ey = —0.3337J, found in the projection method by Becker and co-workers [23], as well
as with Eq = —0.3341J reported recently by Harris [24] for the 2D lattice and thus it may
be considered to be a typlcal result of a local expansion. around a single bond. However,
the value of the magnetization obtained for the 2D square lattice, {S7} ~ 0.363, is much
less satisfactory. 'We note that the other expansions give again the values of the order
-parameter consistent with our result, (§7) = 0.36 [23], and (.35 [24]. This points out
a certain conceptual similarity of all these expansions. It demonstrates that while local
expansions may be successfully used to describe the short-range order that determines-
the energy in a quantum antiferromagnet, a correct determination of the long-range order
parameter (and the correlation functions at larger distance) is a much more subtle problem.
It is related to the weak dependence of the energy of a quantum antiferromagnet on the
actual value of {S7), demonstrated by the Monte Carlo calculations for the 2D lattice (25].
While the local expansions have serious difficulties in implementing the long-range quantum -
ﬂucmatmns they are correctly included in the spin wave expansion which gives the energy

of Ey = —0.33499J and magnetization of (57} = 0.30686 in a 2D square lattice [26,27],
in excellent agreement with the best Monte Carlo estimates {7-9]. Therefore, one can treat
the values of (S7) calculated from local expansions, including that presented here, only as
qualitative information about the reduction of the long-range order parameter in various

. systems. It may be also concluded that quantum fluctuations that involve more “distant

spins play a significant role in reducing the ground state magnetization, but have only a
* relatively small contribution to the energy of a 2D antiferromagnet. As we have shown, their
contribution is the most significant for 2 1D chain, as the energy given in table 1 amounts

only to 96.4% of the exact ground state energy [3].

Altogether, the expansion perfonncd shows that /ocal quantum fluctuations dominate
“the behaviour of the ground state of an AF Heisenberg model. The corrections to the energy
-and to the correlation functions are non-linear functions of the anisotropy in the exchange
interactions, both for the anisotropic Heisenberg model and for the 3D antiferromagnet with

weak coupling in the direction perpendicular to the planes. Thus, the Ising term dominates
in the anisotropic Heisenberg model (1) with y < 0.5, and the anisotropic antiferromagnet
(16) with & < 0.1 has practically the same characteristics as a 2D system. But, of course,
the presence of the exchange interaction in the third direction changes the finite-temperature
- properties and, in particular, influences the value of the transition temperature [28]. 7
We would like to point out that the variational wave functions (3) and (17} used are
limited to AF systems with the classical ground state consisting of two sublattices, described
by the Hamiltontan with nearest-neighbour interactions. In principle, one could treat the
Heisenberg systems with more extended exchange interactions in a similar way. The method
cannot be applied, however, o the highly frustrated systems with an infinite range of
exchange interaction, as for instance to the Klttel—Shore—Dekeyscr—Lee model [29 30]. with
AF cxchangc
Finally, we would like to comment bneﬂy on the result obtamed for the system of two
planes. It shows that the correlation functions and the ground state energy are strongly
infiuenced by the presence.of the interplane coupling.  Thus, the AF ground state of the
undoped YBa,CuisOg, where two CuO, planes next to each other are present, is expected
to be different from that of the undoped T.a;CuOs4, where the single CuO; planes with
the frustrated interplane exchange interaction would rather behave as a 2D antiferromagnet.
Indeed these two compounds have quite:different transition temperatures (T =~ 450 K and
240 K) and the values of the order pa:ameter (0. 65;1,3 and 0.55up) [2,31]. Our variational
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calculation gives a reduction of the magnetization in a two-plane antiferromagnet of 74%
of that found in a 2D square lattice, and agrees qualitatively with the reduction of 68%
obtained in the spin wave theory [32]. Thus, the values of the order parameter in the
undoped LazCuQy4 and in YBa:Cu3zQs given above may be well explained by correcting the
mean field values of the respective order parameter by the respective amount of quantum
fluctuations [33]. :

‘We believe that these new results on the variational wave function (3) have demonstarted
the efficiency of this analytic approach for obtaining rather accurate yet simple estimates
of the ground state energy in Heisenberg antiferromagnets and contributed to a befter
understanding of the quantum fluctuations in the systems with different lattice topology.
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Appendix

Here we give more details conceming the derivation of equations (9) and (11). Let us
consider first the magnetization {S3}, which s calculated from equation (8). The averages
in the numerator and in the deneminator of equation (8) contain only even powers of a,
as the quantum fluctuations which occur in |gg) have to be matched by the respective ones
from {¢ol. In the lowest-order one considers only one quantum fluctuation in the wave
function |¢hp} with respect to the Néel background, jyw}. It reverses the spin at site 0 and
at one of its nearest-neighbour sites in the numerator of equation (8). The non-vanishing
contribution to the average magnetization {S7) is obtained if this defect is next repaired by

the respective quantum fluctuation in {¢;]. The denominator is expanded in the same way
up to o® and one finds that

o i+ za®(S§~1)P
(S0} = 1 +za?2P

This equation reproduces equation (24) given in [17].

The terms ~ o* are twofold. If § > % another quantum fluctuation may occur ejther on
the same bond as the first, or at a bond which starts either at site 0, or at a neighbour of 0
with the spin reversed after the first quantum fluctuation, Next, these defects are sequentially
repaired by the terms from {¢yp|. The second kind of contribution involves the closed loops
and occurs for any value of S. It may be easily understood by considering an example of the
square Jattice. Two bonds that start from the site 0 € A (with up spin) in x and y directions
build a square, together with two other bonds that connect the neighbours of i = 0, labelled
1 and 2, with their common nearest neighbour, { = 3. Now the quantum fluctuations from
|0} may occur, for instance, on the bonds (0, 1) and (2, 3). Thus, all the spins of the
considered square have been flipped from the Néel configuration in the intermediate state.
If we now take the terms S§ S and Sy from the wave function {ggl, the spins of the
square will be flipped back to their original positions. The resulting diagram is a closed
loop on the square. Such contributions have to be counted in a combinatorial way. Thus

Al
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we define K as the number of closed loops of length four that may be constructed around
any chosen bond in the lattice. It is straightforward to verify that X = 2, 4, and 12 for
the 2D square, SC and BCC lattice, respectively. The diagrams that originate from having
exactly the same quantum fluctuations on both sides of S§ in equation (8) are dlsconnected
and do not contnbute Thus, taking § = 2 one finds up to fourth order that

gy o S zo2(SE — 1) P + zo* K (ST — 1) P*

5o) = 1+ za?P + za* K P3 ,

Higher-order contributions occur in this case due to longer closed loops; examples of such

loops were given in [19]. For topological reasons the loops always have an even number

of bonds and increasing the length of the loop by two bonds results in an extra factor of

a?P? in the expansion. It is therefore straightforward to write down the general formula

for (S5}, as given in equation (9) for § = -‘- In order to perform numerical calculations for

a particular latuce up to order 2n, one has to determine the numbers ¢a of closed loops of
length 2k = 4, ..., 2r that may be constructed around a given bond.

The caIculat:on of the ground state energy Ej, as given in equation (5), is performed in

a similar way. There are two terms: the Ising part and a transverse part. Let us consider the

Ising term first. In second order a single quantum fluctuation occurs either on the considered

bond (0, @), or on one of the outside bonds_that connects site O (or site @) with its nearest

neighbour. This quantum fluctuation has to be matched by the same term from {¢l in order

to come back to the Néel state. One finds that

—— 14+ a1 -2(z—1)P]

%) = T T 2(z— 1)PY

In fourth order the contributions to the energy calculated for § = 5 are twofold. First, two
separate quantum fluctuations may occur: one on a bond connecting the site I = 0 with its
nearest neighbour different from «; and another one on a bond connecting the site § = a with
one of its nearest neighbours different from 0. Second, a quantum fluctuation on a central
_ bond (0, a) may be accompanied by a quantam fluctuation on a paralle! bond that connects
the nearest neighbours of 0 and g, respectively. Such a configuration of four reversed
spins on a square may be next repaired by quantum fluctuations on the other two bonds
which connect the nearest neighbours (for instance, if the bond (0, ) were horizontal, the
compensating terms would occur on the vertical bonds). This latter term gives the lowest-
order contribution due to the closed loops. We note that in both the above processes the
spins 0 and a have been reversed and thus their energy contributions have the same sign as
those from the Néel state. The resulting formula up to fourth order takes the form
1+ 2[1 = 2(z = )P+ 0 (z — 12 P2 +a*KP?

1+ a1 +2z~ DP1+a*(z - 1)2 P2 +a*K P’

- An expansion up to higher (sixth, eighth, etc) orders is now obtained by adding the respective.
contributions of longer closed loops in the numerator and in the denominator.

Coming to the transverse part, ~ (y/2)(Sy S} + SF'S; ), we note that these energy
contributions contain only odd powers of «, as the term from the Hamiltonian already
represents one quantum fluctuation. Thus, the lowest-order contribution is ~ ¢ and occurs
twice, as the quantum fluctuation on the bond (0, @) may be compensated by the respective
term either from |g) or from {¢g|. In third order there is only a contribution from the
closed loops of length four, of the same topology as that discussed above for ($352). By
evaluating these terms one finds up to fourth order that

a+a’KP?
T+ 1+ 2G - DP] + ok — PP+ kP2

(A2)

(A3}

(S555) = (A4)

1
588 +558;) = (A35)
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As in the case of the Ising contribution, the higher-order terms follow from longer closed
loops and can be included in the numerator of equation (A5}, and in the normalization factor
in the denominator. Including them in equations (A4) and (A5) results in equation (11).
Bartkowski has performed a second-order expansion for the magnetization, as given in

equation (A1), and an incomplete expansion up to fourth order for the energy of the form
[17] '

g, = 141 -2~ DPI+atz — )2P? —dya — day Ko?P? (46)
°= 73 i+al+2(z— DP]+a*(z— 1)2PZ

This formula does not include the closed loop contributions in the Ising term and in the

normalization factor, as given in equation (A4).
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