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Abstract. The vanauonal wave function proposed by Bar&owski Io beat the ground slate of a 
quantum antiferromagnet is generalized to arbitrary spm We derive the fundamental equations 
of this m h c d  for the energy and magnetization by using a local clusrer expansion The leading 
order corrections to the wave function in the limit of either large spin S or lattice dimension D 
are identified. The g w d  quality of the wave function is eOnfirmed by the ground state energy 
of Eo = -0.33401 obtained for the Heisenberg S = f antifmmagnet on the square lattice. 
We present results obtained for the system of two planes and for three-dimensional sc and Bo2 
lattices, as well as for the three-dimensional -ic Heisen- model. It is found that the 
quantum Auctuabons m a two-plane system are already closer to a threedimensional than to 
a twc-dimensional antiferromagnet. while a weak interplane coupling in the latter case hardly 
influences the nearest-neighbour spin “elations within the planes. 

1. Introduction 

The discovery of high-temperature superconductors with their two-dimensional (2D) CuOl 
planes, which exhibit a quasiuo antiferromagnetic (AF) order in the undoped systems 
[1,2] caused a renewed interest in the m Heisenberg model. It is well known that 
the model is exactly solvable in one dimension, with the exact ground state energy of 
-0.44195 per bond [3], where J is the exchange interaction, and exhibits no AF long- 
range order. While the existence of the AF long-range order in a three-dimensional (3D) 
system was proved rigorously by Kennedy, Lieb and Shastry [4], the issue was controversial 
for a 2D system due to the theorem of Mermin and Wagner [5]. Numerous studies 
undertaken recently by various powerful analytic and numerical methods have demonstrated 
that the long-range AF order exists in a 2D Heisenberg mcdel at temperature T = 0 
[61. Although there is no exact solution in two dimensions, the calculations performed 
within the Green function Monte Carlo method provided a very accurate estimate for the 
ground state energy of -(0.3347 f 0.0002)J per bond [7-91. This result is consistent 
with the energy of -(0.334 -+ 0.001)J obtained by Huse [lo] from the series expansion 
derived earlier by Parrinello and Arai [Ill, as well as with the more accutate estimation of 
40.3348 & 0.0003)J found recently by Singh [12] from the expansion around the Ising 
limit Similar, but slightly higher values of energy were obtained by various analytic and 
numerical methods [6]. We will not attempt to improve these results for the 2D Heisenberg 
model, but instead we want to present a simple variational approach that gives results of 
comparable quality. Its conceptual and numerical simplicity allows us to estimate the energy 
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of Heisenberg antiferromagnets on different lattices in a very fast and efficient way, as we 
demonstrate below. 

Numerical methods usually give little insight into the nature of the ground state wave 
function and the way it could be treated approximately in an analytic approach. Therefore, 
analytic, and in particular variational, approaches are very useful as they allow not only 
for a more transparent description of the Heisenberg magnets, but also contribute to better 
understanding of the nature and role played there by quantum Ructuations. The conceptually 
simplest approach s t a m  from the spin density wave solution of the Hubbard model, which is 
variationally improved with the help of the Gutzwiller w s a h  [13]. The energy obtained in 
this way by Yokoyama and Shiba [13] of -0.3215 lies well above the other estimates 
as this variational umarz implements only the local constraint and neglects the short- 
range correlations. They are included in two variational wave functions widely used for a 
Heisenberg antifemmagnet. The first of them, proposed by Marshall in 1955 [141, focuses 
on the statistical distribution of spins over the lattice and optimizes the distance dependence 
of the spin-spin correlation function (SFS;) [14-161. It gives a rigorous variational upper 
bound for the ground state energy of a ZD antiferromagnet of -0.33195 [HI. The second 
wave function was proposed by Bartkowski in 1972 [17]. It implements the quantum 
fluctuations on the bonds in the classical N&l state. Unfomnately, it was claimed in the 
original paper that it gives a ground state energy only of -0.3295 per bond which is certainly 
worse than any other approach to the Heisenberg Hamiltonian that includes the quantum 
fluctuations, except perhaps for the lowest-order spin wave theory result [18]. Therefore, the 
Bartkowski wave function was neglected for a long time until one of us demonstrated that 
the quality of this wave function is de facto much better [19], provided that the fully self- 
consistent minimization of the obtained expression for the ground state energy is performed. 
The method proposed originally by Bartkowski then gives the energy of -0.33205 [191 
instead of -0.3295 [17]. Therefore, we use this wave function in the present contribution 
as a conceptually simple method to investigate the quantum fluctuations in the following 
systems: (i) diamond lattices in D dimensions; (ii) the anisotropic Heisenberg model in 
two and three dimensions, 3D and for the system of two planes; and, finally, (iii) for the 
anisotropic 3D Heisenberg model with a weaker exchange interaction between the 2D planes 
than within them. 

2. The variational wave function and the calculation method 

In order to demonstrate the role of quantum fluctuations in the reduction of the ground state 
energy we consider the anisotropic Heisenberg model on bipartite lattices 

where J is the exchange interaction between the nearest-neighbour spins S, and the 
anisotropy parameter y stands for the ratio of the exchange parameters in the quantum 
fluctuation, i.e. - (S?S,:+S;S?) part, and in the king part, respectively. The Hamiltonian 
(1) gives the king and Heisenberg Hamiltonians for y = 0 and 1, respectively. The classical 
ground state of (l), which becomes exact in the king limit, is the N&l state 

Written here by using fermion creation operators, a. t and U,+ t for the sublattices A and 
‘f B. respectively. Barkowski’s idea was to correct this classical state by allowing for the 
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reversals of pairs of the nearest-neighbour spins, i.e. two spins terminating a particular bond 
in the lattice. The variational wave function is therefore of the form (171 

where i + S ( i )  stands for'a neighbour of site i. This wave function may be used for any 
spin S, as the ZS factors (1 + &S?SL,/2S),for each bond allow'us.to completely kverse 
the spins. In the original wave function [I71 only one such factor per bond was included 
which allows for a single quantum fluctuation aild is therefore appropriate only for S = 4. 
In the applications of the wave function (3) we shal'limit ourselves to the most interesting 
case o f s  = 2' 

The variational parameter 01 has to M determined from the minimization of @e ground 
sfate energy 

It may be easily verified hat the wave function (31 reproduces the exact singlet wave 
function fdr a pair of spins S = 4 with the choiae o f ' a  = I- [191. The form of this 
wave funcfion (3) resembles the Gutzwiller unsah'for the Hubbard model [ZO]. Both 
wave fuii&ons emphasize local comlations of certain kind, but the latter wave functioii 
implements the correlatioijs in a Slater determinant, while the former implements quantum' 
fluctuatidns into the cl&sical AF state of (already) localized fermions. As for the Gutzwiller 
wave function, in the present case one may also.propose a combinatorial way of calculating 
various average quantities [17,21]. We have chosen to use a certain generalization of the 
onginal approximate method as proposed by BartkowOki which is based on a local cluster' 
expansion 1191. 

In order to calculate the energy of the ground state,  one has to evaluate the ground 
state energy EO which could be calculated exactly fr6m equation (4) only for small finite 

-cIustem. As for the inhi te  system the exact evaluation of its eneigy is not possible, one 
includes only the connected diagrami up to a given order in the variational parameter a, 
and evaluates the energy per bond according bithe formula 

where (0, a) is an arbitmy bond and (..l)c means that only connected diagrams afe included 
in the numerator and the denominator of Guation (5). The quantum fluctuations, - SFST, 
which result from the expansion of~{q5& abd &,), Ge representedthek as lines in aconnected 
diagram. Of course, the energy caldulated in this way is not exact for the wave function (3) 
used and thus equation (5) hiis to.be treated as a variational unsalz. In the contribution from 
the (0, U )  bond one includes explicitly the quantum fluctuations of the spins at sites 0 and a. 
In conmt ,  the quantuhl fluctuations on the neighbouring sites'are only'partigly included, 
i.e. only for those bonds that connect this site with the central sites 0 or a. Therefore, 
one encounters the problem Of how to include the effect of quantum fluctuations on those 
(outside) bonds not,explicitly treated within the performed cluster expansion, i.e. how the 
considered cluster should be embedded in order to simulate an infinite system. Consider 
a bond (0.0) for which the energy is calculated according to equation (4): The bonds 
not treated explicitly by the included quantum fluctuations reduce the probability that these 
quantum fluctuations can occur and that any of the considered diagrams is successfully 
completed. This effect may be included in a statistical way by introducing a probability 
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P that a particular spin is already reversed due to the other (z - 1) outside bonds 1171. It 
is related to the probability Q that any spin in the lattice is not affected by the quantum 
fluctuations at all z bonds, 

A M Ole$ and B Olei 

(6) 

where z is the number of nearest neighbours in the considered lattice. By construction, the 
latter probability is related to the local reduction of staggered magnetization due to quantum 
fluctuations. For a general spin S one finds that 

p‘ = p i ’  

2s+ 1 1 (Si) = - 
2 Q - 5  (7) 

which generalizes the respective relation given by Barkowski for S = f [171. Thus, one 
needs the probability P (or Q) in order to perform the minimization of the ground state 
energy, EO. This probability may be determined from the equation for the average magnetic 
moment, (Si), calculated again by making use of the linked cluster theorem (bere we assume 
that site 0 E A)  

Again, equation (8) is an u11snfz consistent with the expansion (5) performed for the ground 
state energy. In the linked cluster expansion one finds that the contributions to the matrix 
elements (#0lS~1#00) and (#~[tJo) come either from self-retracing paths, or from closedloops 
(if such loops exist in the considered lattice). Examples of such closed loops in a U) system 
were given in [19], and more details are given in the appendix. By the evaluation of these 
matrix elements one finds for s = 2 

Here Si is the average magnetization in the N6el state I$& while K is the number of 
nonequivalent closed loops of length four bonds, built around a single bond, as introduced 
in the appendix. Finally, c% are the combinatorial coefficients that express the number of 
non-equivalent loops built by n bonds. By definition cd = I, while cs = 3, 6, and 9 for a 
2D square lattice, the system consisting of two parallel planes, and for both 3D lattices (SC 
and BCC). respectively. We have also used below cs = 10 for the ZD square lattice. By 
combining (6). (7). and (9), one finds the following equation for P, which we reproduce 
here only for S = 4: 

This may be solved for any given value of a. Equation (10) reproduces the respective 
condition for P used by Barkowski [ 171, if the contribution from closed loops is neglected, 
i.e. at K = 0. 

The next step is the calculation of energy from equation (5). The structure of the 
contributions from the king part of the Heisenberg Hamiltonian (1) is dieerent from that of 
the contributions that result from a quantum fluctuation - S;S; on the considered bond (0- 
n). As the quantum fluctuations in (,&lH,ltJo)c must be compensated pairwise, in the first 
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case one has to include an even number of quantum fluctuations from the wave functions 
($01 and I$o), while this number has to be odd in one of these wave functions in the second 
case. As a result one finds (see the appendix for more details) that 

Eo = -- 
where 

(11) 
J l+az[l  -2(2-l)P]+a4(z- 1)2PZ-4ya+(a2-4acuy)KW 
4 1+012[1+2(2- i ) ~ ] + a 4 ( ~ -  1 ) 2 P 2 + & ~ ~  

n 
W = K E C ~ ~ U  2-2p2k-2, 

k 1  

Next, the ground state energy Eo has to be minimized with respect to the value of the 
variational parameter a. In the limit of low density of spin deviations from the N&l state, 
i.e. if the quantum fluctuations are independent of each other, one finds for an AF Heisenberg 
model with spin S that 1171 

a = -S/(2Sz - 1). (13) 
This value of a, obtained from EO by taking only the contributions up to - a2 and assuming 
that P = 1, may be considered to be the lowest-order approximation; the improved value 
of a may be found by numerical minimization of the energy EO, as given by equation (11). 
This minimization procedure has to be performed self-consistently with equation (lo), which 
gives the value of P for a given a. More details conceming the derivation of (10) and (11) 
may be found in [I71 and [19]. 

Once the values of a and P are known, one may calculate the order parameter (Si} and 
the ground state energy EO. We have quantified the quantum correction to the classical (or 
mean field) ground state energy of an S = f antiferromagnet, Em = - J/4, by 

EMF - EO s =  
I EMF I ‘ (14) 

The variational wave function (3) also allows for the calculation of the nearest-neighbour 
correlation function (S;S;), which provides information about the short-range order in the 
ground state. By using the same local cluster expansion as for the calculation of energy 
(1 1) one finds that 

1 1 + a*r1 - 2(z - 1)Pl + a4(2 - 1)2P2 + aZKW (S’Si’=-;i l+(y2[1+2(2-i)~]+a4(2- i)2p2+@2Kw . ( 1 3  

In Section 3 we present the numerical results for the S = $ AF Heisenberg model defined 
on several lattices. 

In a similar way we investigated an anisotropic 3D cubic lattice with stronger exchange 
interaction J l l  in the planes, and weaker interaction JI between them, described by the 
Hamiltonian of the form 

It is convenient to introduce the anisotropy parameter 5 = J ~ / J I I  and label the spin operators 
S,,i by two indices, the plane index n and the intra-plane index i. The variational wave 
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function for the anisotropic system described by the Hamiltonian (16) may be constructed 
by generalizing equation (3). 

A M OleS and B OieS 

where [n, i +S(i)] stands for a neighbour of site (n, i) in the plane n and [n+ p(k),  i] is a 
neighbour of site (n, i) in the plane above or below the plane n. This wave function may 
be in principle used for any spin S, but we consider it here only for S = as in this case 
the quantum fluctuations are largest and this value of S is relevant for highly anisotropic 
exchange interactions in the high temperature superconductors. 

Although the wave function (17) depend$ formally on two variational parameters, we 
adopted an amatz that B = ea!. It may be easily verified that this ansan includes the 
leading part of the energy gain resulting from the interplane quantum fluctuations and is 
consistent with the expansion performed in powers of (1. It is then straightforward to derive 
the equations for (Si) and EO by using the same expansion as described in the appendix. 
One finds that the probability P is found from the condition 

P*r’(-*) [l + ZlIa!2P + ZiS2P 

+ zuKlu2(or2 + 2B2)P3(l + 6(1’P2 + 3B2Pz)1 = 1 . (18) 

Here the number of nearest neighbours in the plane and in the neighbouring planes is 
211 = 4 and ZL = 2, respectively, and the effective number of nearest neighbours is defined 
as 2,s = zll+ p z ~ .  The energy of the ground state per one bond in the plane is found from 
the formula 

where from a similar local cluster expansion to that described before one finds up to order - cy6 the following matrix elements: 

(h I SiiSij I = -$( 1 4- a!q1 - 2(211 - l)P] - 2B2ZlP 

+ [(12(zu - 1) + BZZL12P2 (20) 

+(uZ(a2+j?Z)KPZ(l  +6a2P2+3j3ZP2)} 

($a I f(s,s;+S&) I ~ I ) ) e = - a ! [ l + ( a ! 2 + B 2 ) K ~ ~ ( 1 + ~ z P ~ + 3 B 2 P ~ ) )  (21) 

($0 I $o)c = 1 + (1*u - 2(ZIl - 1)Pl- 2B2ZLP + [a!Z(Zl, - 1) + BZZl12P2 

+a2(m2 + ~ 2 ) K P 2 ( 1 + 6 a 2 P z + 3 ~ 2 P 2 ) .  (22) 

The minimization of EO (equation (19)) over a! has to be performed self-consistently with 
the solution of equation (18) for P, where 0 < P < 1. With the known variational 
parameters a! and f3 and the probability P we find the magnetization in the anisotropic 
system (15) from the equation analogous to (6). but with the replacement z -+ Z.R. Finally, 
the nearest-neighbour spin-spin conelation function is obtained from (7.0) and (22), 
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3. Numerical results 

Before presenting the numerical results. Iet us consider the limits o€ either S + CO, or 
z + CO. In both cases we are interested only in leading order corrections and thus it is 
sufficient to limit oneself to the terms of order - CY*. One finds that for large S 

2 - 1  1 P Y 1 -4-- 
4z+1  S 

while for large z 

1 1  P Y I -  - 
2(2S+1) 2 '  

The expansion for large S is of less significance as it is meaningful only for S > 1. The 
region of validity of the expansion for large z is much broader. In fact, it extends down to 
z Y 4 for S = $. This can be demonstrated by minimizing the energy for a Ddimensional 
diamond lattice, with z = D + 1 and K = 0, 

(26) 

for the value of P given by equation (25). For the 3D diamond lattice ( D  = 3, z = 4) one 
finds from a self-consistent solution of equations (10) and (1 I )  the value of P = 0.934, while 
from equation (25) one finds P = 0.953. The detailed comparison of the numerical results 
for the correlation function (S;S;) and the quantum correction S to the ground state energy, 
as defined by equation (14). obtained in the diamond lattices is given in table I. They are 
compared with the results found by using the expansion for large z in figure 1. As expected, 
the correlation function (Sf$) converges to the classical limit of (S;S?Jwmg = -0.25 as 
z --f CO. Furthermore, for z > 4 (i.e. D 3) the results of numerical minimization 
are practically indistinguishable from the analytic results obtained from the expansion (see 
figure 1). Significant corrections, both in @;Si) and 8 ,  are found only for the hexagonal 
lattice (z = 3) and for the one-dimensional (ID) chain (z = 2). The quantum corrections 
to 6 the ground state energy are considerably larger there than those resulting from the 
large z expansion, while the short-range order, measured by the correlation function (SfS;), 
is reduced less than expected from the expansion. This may be seen as a signal that the 
quantum corrections to the ground state energy increase, whereas the short-range order 
remains well preserved, as known from the exact solution of the I D  Heisenberg chain [3]. 

J I + c Y * ( ~  - ~ D P ) + C X ~ D * P ~ - ~ ~ C Y  Bo = -- 
4 1 + C Y ~ ( ~  + 2 D P )  + a4D2P2 

. .  

Table 1. Variational parameter a, p u n d  s a l t  energy Ea per band (in units of J )  and the 
quantum correction S to the ground state energy ((II), (12)). magnetic moment (Sf). and 
correlation function (SyS;), as obtained for diamond lattices in D dimensions. z = D + 1 
is the number of nearest neighbours. 

D ,  I .  a P En s (Sf) vis;, 
1 2 -0.3824 0.8907 -0.4271 0.7085 0.2933 -0.1585 ' ~ ' 

2 3 -0.2285 0.9146 -0.3562 0.4248 0.3747 -0.1737 . 
3 4 -0.1599 0.9339 -0.3252 0.3008 OM28 -0.1890 
4 5 -0.1221 0.9469 -0.3080 0.2321 0.4341 -0.2001 
5 6 -0.0984. 0.9559 -0.2972 0.1888 0.4474 -0.2081 
6 7 -0.OE25 '0.9623 -0.2898 0.1590 ' -  0.4562 -0.2138 
7 8 -0.0709 0.9672 -0.2843 0.1373 0.4626 -0.2183 
9 . IO -0,0553 0.9739 -0.2770 0.1078 0.4711 -0.2246 
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0.3 r-----? 
0.25 .~ I 1.0 

Fwre I. The quantum correction S w the ground siate 
energy and the nearest-neighbour correlation function 
(S;S;), as defined in equations (14) and (15). for 
diamond lattices a$ functions of l / r .  

Figure 2. Quantum cmctions S to the ground srate 
energy in the anisotropic Heisenberg model as functions 
of the anisompy parameter y .  Full, dashed-do&. and 
dashed lines are for the ZD square lanice, the WO-plane 
system. and the I D  sc lanice. respectively. 

Table 2. Variational parameter a, gmund stale energy EO per bond (in units of J ) .  the quantum 
m m t i o n  S to the ground state energy magnetic moment (Sf). and conelation function (SfS;), 
as oblained for the isotropic antife"agnetic Heisenberg model fm a ZD square lauice, in the 
successive approximarions within the local cluster expansion. 

ff Eo 6 (Sf) cs;s;, 
Bankowski method -0.1866 -0.3320 0.3281 0.3874 -0.1724 
Order - a4 -0.1926 -03328 0.3313 0.3757 -0.1695 
Order - ff6 -02OlO -0.3338 0.3350 0.3656 -0.1646 
Order - a8 -02032 -0.3339 0.3356 0.3629 -0.1632 
ExUapolation to a* -02036 -0.3340 0.3358 0.3622 -0.1628 

As a second application of the wave function (3) we have performed the calculations 
of the ground state energy EO, magnetization (a), and the nearest-neighbour correlation 
function (S;S;) for the anisotropic Heisenberg model (I) on a ZD square lattice, the system 
consisting of two planes, and a 3D SC lattice. First, let us consider the case of isotropic 
exchange interaction, The values of energy Eo and magnetization ($) obtained for a 
2D square lattice in different orders in a, and presented in table 2, are encouraging. We 
note that solving self-consistently equations (25) and (32) given by Bartkowski in [I71 
results in a significantly better result than that originally reported, with EO = -0.33203 
and (Sf) = 0.387 [19]. By making an expansion up to the eighth order in the variational 
parameter a we were able to decrease the energy down to -0.3339J. while the value of (S;) 
decreases down to 0.3629. As observed in table 2, the series converges very rapidly and 
gives the estimated values of the energy, Eo = -0.33405 and magnetization, (S;) = 0.3626 
for the infinite system. The value of energy obtained in this case is of very good quality 
indeed. It lies below the rigorous variational upper bound obtained from the other variational 
wave function by Huse and Elser 1161 and is also better than the value of EO = -0.33173 
found by Sachdev 1221 by using a different expansion. Therefore, our ground state energy 
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Figure 3. Order parameters (Sf) in the m o m p i c  Figure 4. Spinspin nearest-neighbour coxrelation 
Heisenberg model as functions of the anisouopy functions (S;S;) in the anisotropic Heisenberg model as 
parameter y .  The meanings of the lines are as in functions of the anisotropy parameter y .  The meanings 
fip 2. of the lines are as in figure 2. 

is the lowest upper bound among existing variational calculations with a single variational 
parameter. Among various analytic approaches applied so far to the AF 2D square lauice, 
a lower value of energy than the one found here, EO = -0.33485. has been obtained only 
by Singh h m  the expansion around the king limit [12]. 

Table 3. Results for the variational parameter U, ground stale energy Eo per bond (in uniu of 
J), the quanlum correction S m the ground state energy magnetic moment (St), and conelation 
function (SfS;), ss obtained in Le expansion up 10 u6 for the isotropic antiferromagnetic 
Heisenbq model for a m square lanice. WO planes with the Same inter- and invaplanar 
exchange intemction. sc and BCC lattices. T is the number of nearest neighbours and K is the 
number of nonequivalent closed loops. as defined in the text. 

lanim z K m  P EO S (St) cs;s;, 
Square 4 2 -0.2010 0.8955 -0.3338 0.3350 0.3656 -0.1646 
WO planes 5 3 -0.1503 0.9195 -0.3142 0.2566 0.4004 -0.1806 
sc 6 4 -0.1171 0.9370 -0.3015 0.2061 0.4249 -0.1940 
BCC 8 12 -0.0983 0.9348 -0.2901 0.1605 0.4258 -0.194 

A similar quality of the calculated ground state energies is expected for the two-plane 
system and for a 3D SC lattice (see table 3). One observes that the reduction of the ground 
state energy due to quantum fluctuations in the two-plane system is qualitatively half way 
between those found in the ZD and 3~ lattices. Contrary to the naive intuition, we observe 
that for the fixed dimension D the lattices with a higher coordination number have lower 
decrease of the ground state energy due to the quantum fluctuations on the bonds, and the 
largest energy correction due to quantum fluctuations 6 is found in the diamond lattices. 
For instance, for D = 3 one finds 6 = 0.301, 0.206 and 0.161 for the diamond, SC and 
BCC lattice, respectively (see tables 1 and 3). The reason for this behaviour is the presence 
of the closed loops for the two latter lattices. They increase the number of diagrams that 
have to be considered in the expansion, each giving the same energy contribution as in the 
N&l state (for S = 4). In other words. the quantum fluctuations become interrelated in 
the lattices with the closed loops and thus their conbibution to the ground state energy is 
reduced 
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The results obtained for the ground state energy reduction 8, the order parameter {Sf ) .  
and the nearest-neighbour Correlation function {SfS;) for the anisotropic Heisenberg model 
(1) are. presented in figures 2 4 .  The corrections to all these quantities are of the order 
of - y 2  close to the king limit, with the coefficients dependent on the dimension of the 
lattice. By comparing the calculated energies and the correlation functions we observe 
that two planes coupled by an exchange interaction exhibit quantum fluctuations strongly 
reduced from those found for a single plane. In fact, the two-plane system is found to be 
somewhat closer to the 3D SC lattice than to the ZD square lattice. 

0.12- 
1 

0.20 -0.30 
1 0 

0.5 e 0 
- 

Figure 5. Quantum corrections 6 to the ground state 
energies and the order parameter (S;) in the anisotropic 
System described by the Heisenberg model as functions 
of the anisompy 8 in the exchange interactions in a 30 
I a u i c e. 

Figure 6. Spin-spin nearest-neighbour correlaiion 
functions (S;S;) in the anisotropic system described by 
the Heisenberg model as function E of the anisotmpy 
in the exchange interactions in a 3 0  lanice. 

Finally, we considered a 3D system with an anisotropic exchange interaction, as defined 
in equation (16). As for the cases discussed above. we have solved self-consistently 
equations (18) and (19) by a numerical minimization of the energy Eo over a single 
variational parameter a. It has been found that a small interplane exchange interaction 
JI has almost no effect on the in plane properties, such as the energy per bond, the average 
magnetization (S:), and the nearest-neighbour correlation function (S,$Sij) (see figures 5 
and 6). Thus the system with 6 = JL/JII c 0.1 remains practically equivalent to a 2D 
Heisenberg antiferromagnet. The quantities displayed in figures 5 and 6 start to change 
faster only for e 2: 0.2 and gradually approach the limit of a 3D antifemmagnet on an SC 
lattice as 6 --f 1. The interplane correlation function (S;iS;+,,i) always has a lower value 
than that in the plane, as the independent quantum fluctuations within both planes weaken 
the spin order on the vertical bonds more efficiently. 

4. Summary and conclusinns 

The results obtained in the previous section demonstrate that the variational wave function 
originally proposed by Bartkowski [ 171 is well designed for estimating the ground state 
energy of models of interacting spins on different lattices. It captures the essential part of 
the quantum fluctuations that, in the leading order, occur on the bonds between the nearest 
neighbours. The expansion obtained in the variational parameter converges rapidly i d  
gives the estimated energy of the infinite 2~ square lattice EO = -0.33405 per bond, being 
higher only by less than 0.3% than that obtained from the Green function Monte Carlo 
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method, Eo z -0.33475 per bond [7-9]. It is not easy to come close to this number 
by using analytic methods. Furthermore, the obtained energy agrees quite well with that, 
EO = -0.33375, found in the projection method by Becker and co-workers [23], as well 
as with Eo = -0.3341 5 reported recently by Harris (241 for the 2D lattice and thus it may 
be considered to be a typical result of a local expansion around a single bond However, 
the value of the magnetization obtained for the 2D square lattice, (S:) r 0.363, is much 
less satisfactory. We nDte that the other expansions give again the values of the order 
parameter consistent with our resulf (S:) = 0.36 [23], and 0.35 [24]. This points out 
a certain conceptual similarity of all these expansions. It demonstrates that while loco1 
expansions may be successfully used to describe the short-range order that determines 
the energy in a quantum antiferromagnet, a correct determination of the long-range order 
parameter (and the correlation functions at larger distance) is a much more subtle problem. 
It is related to the weak dependence of the energy of a quantum antiferromagnet on the 
actual value of (S,”), demonstrated by the Monte Carlo calculations for the 2~ lattice [25]. 
While the local expansions have serious difficulties in implementing the long-range quantum 
fluctuations, they are correctly included in the spin wave expansion which gives the energy 
of EO = -0.334995 and magnetization of (S:) = 0.30686 in a ZD square lattice [26,27], 
in excellent agreement with the best Monte Carlo estimates [7-91. Therefore, one can treat 
the values of (S:) calculated from local expansions, including that presented here, only as 
qualitative information about the reduction of the long-range order parameter in various 
systems. It may be also concluded that quantum fluctuations that involve more distant 
spins play a significant role in reducing the ground state magnetization, but have only a 
relatively small contribution to the energy of a ZD antiferromagnet. As we have shown, their 
contribution is the most significant for a ID chain, as the energy given in table 1 amounts 
only to 96.4% of the exact ground state energy [31. 

Altogether, the expansion performed shows that local quantum fluctuations dominate 
the behaviour of the ground state of an AF Heisenberg model. The corrections to the energy 
and to the correlation functions are non-linear functions of the anisotropy in the exchange 
interactions, both for the anisotropic Heisenberg model and for the 3D anlifemmagnet with 
weak coupling in the direction perpendicular to the planes. Thus, the king term dominates 
in the anisotropic Heisenberg model (1) with y < 0.5, and the anisotropic antiferromagnet 
(16) with e < 0.1 has practically the same characteristics as a 2D system. But, of course, 
the presence of the exchange interaction in the third direction changes the finite-temperature 
properties and, in particular, influences the value of the transition temperature [281. 

We would like to point out that the variational wave functions (3) and (17) used are 
limited to AF systems with the classical ground state consisting of two sublattices, described 
by the Hamiltonian with nearest-neighbour interactions. In principle, one could ma t  the 
Heisenberg systems with more extended exchange interactions in a similar way. The method 
cannot be applied, however, to the highly frustrated systems with an infinite range of 
exchange interaction, as for instance to the Kittel-ShowDekeyser-I.# model 129,301 with 

Finally, we would like to comment briefly on the result obtained for the system of two 
planes. It shows that the correlation fnnctions and the ground state energy are strongly 
influenced by the presence of the interplane coupling. Thus, the AF ground state of the 
undoped YBazCu306, where two CuOz planes next to each other are present, is expected 
to be different from that of the undoped LazCuO4, where the single CuOz planes with 
the frustrated interplane exchang6 interaction would rather behave as a 2D antiferromagnet. 
Indeed, these two compounds have quite different transition temperatures (TN N 450 K and 
240 K) and the values of the order parameter (0.65~~ and 0 . 5 5 ~ ~ )  [2,31]. Our variational 

AF exchange. 
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calculation gives a reduction of the magnetization in a two-plane antiferromagnet of 74% 
of that found in a ZD square lattice, and agrees qualitatively with the reduction of 68% 
obtained in the spin wave theory [32]. Thus, the values of the order parameter in the 
undoped LazCu04 and in YBazCu30, given above may be well explained by correcting the 
mean field values of the respective order parameter by the respective amount of quantum 
fluctuations 1331. 

We believe that these new results on the variational wave function (3) have demonstarted 
the efficiency of this analytic approach for obtaining rather accurate yet simple estimates 
of the ground state energy in Heisenberg antiferromagnets and conmbuted to a better 
understanding of the quantum fluctuations in the systems with different lattice topology. 
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Appendix 

Here we give more details conceming the derivation of equations (9) and (11). Let us 
consider first the magnetization (Si), which is calculated from equation (8). The averages 
in the numerator and in the denominator of equation (8) contain only even powers of a, 
as the quantum fluctuations which occur in 140) have to be matched by the respective ones 
from ($01. In the lowest-order one considers only one quantum fluctuation in the wave 
function 140) with respect to the N&l background, I@”). It reverses the spin at site 0 and 
at one of its nearest-neighbour sites in the numerator of equation (8). The non-vanishing 
contribution to the average magnetization (Si) is obtained if this defect is next repaired by 
the respective quantum fluctuation in (401. The denominator is expanded in the same way 
up to a2 and one finds that 

This equation reproduces equation (24) given in [17]. 
The Ems - a4 are twofold. If S > f ,  another quantum fluctuation may occur either on 

the same bond as the first, or at a bond which start?, either at site 0, or at a neighbour of 0 
with the spin reversed after the first quantum fluctuation. Nexr these defects are sequentially 
repaired by the terms from {$ol. The second kind of contribution involves the closed loops 
and occurs for any value of S. It may be easily understood by considering an example of the 
square lattice. Two bonds that start from the site 0 E A (with up spin) in x and y directions 
build a square, together with two other bonds that connect the neighbours of i = 0, labelled 
1 and 2, with their common nearest neighbour, i = 3. Now the quantum fluctuations from 
I h )  may occur, for instance, on the bonds (0,l)  and (2,3). Thus, all the spins of the 
considered square have been flipped from the N&l configuration in the intermediate state. 
If we now take the terms SZS; and S:S; from the wave function (401, the spins of the 
square will be flipped back to their original positions. The resulting diagram is a closed 
loop on the square. Such contributions have to be counted in a combinatorial way. Thus 
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we define K as the number of closed loops of length four that may be constructed around 
any chosen bond in the lattice. It is straightforward to verify that K = 2, 4, and 12 for 
the ZD square, SC and BCC lattice, respectively. The diagrams that originate from having 
exactly the same quantum fluctuations on both sides of Si in equation (8) are disconnected 
and do not contribute. Thus, taking S = f one finds up to fourth order that 

Higher-order contributions occur in this case due to longer closed loops; examples of such 
loops were given in [19]. For topological reasons the loops always have an even number 
of bonds and increasing the length of the loop by two bonds results in an extra factor of 
uZP2  in the expansion. It is therefore straightforward to write down the general formula 
for (S;), as given in equation (9) for s = f. h order to perform numerical calculations for 
a particular lattice up to order 2n, one has to determine the numbers c& of closed loops of 
length 2k = 4, ..., 2n that may be constructed around a given bond. 

The calculation of the ground state energy Eo, as given in equation (5), is performed in 
a similar way. There are two terms: the king part and a transverse part. Let us consider the 
king term first. In second order a single quantum fluctuation occurs either on the considered 
bond (0, a), or on one of the outside bonds that connects site 0 (or site a )  with its nearest 
neighbour. This quantum fluctuation has to be matched by the same term from (401 in order 
to come back to the N6el state. One finds that 

1 + aZ[1 - 2(z - 1)Pl 
- 1 +a2[1+2(z-  l ) P ] .  

* 1 -  

In fourth order the contributions to the energy calculated for S = f are twofold. First, two 
separate quantum fluctuations may occuc one on a bond connecting the site i = 0 with its 
nearest neighbour different from a ,  and another one on a bond connecting the site i = a with 
one of its nearest neighbours different f” 0. Second, a quantum fluctuation on a central 
bond (0, a) may be accompanied by a quantum fluctuation on a parallel bond that connects 
the nearest neighbours of 0 and Q, respectively. Such a configuration of four reversed 
spins on a square may be next repaired by quantum fluctuations on the other two bonds 
which connect the nearest neighbours (for instance, if the bond (0, a) were horizontal, the 
compensating terms would occur on the vertical bonds). This latter term gives the lowest- 
order contrihution due to the closed loops. We note that in both the above processes the 
spins 0 and a have been reversed and thus their energy contributions have the same sign as 
those from the N6el state. The resulting formula up to fourth order takes the form 

(-44) 

An expansion up to higher (sixth, eighth, etc) orders is now obtained by adding the respective 
contributions of longer closed loops in the numerator and in the denominator. 

Coming to the transverse part, - (~/2)(s;S,’ + So+S;), we note that these energy 
contributions contain only odd powers of a. as the term from the Hamiltonian already 
represents one quantum flucNati0n. Thus, the lowest-order contribution is ,., a and occurs 
twice, as the quantum fluctuation on the bond (0, a) may be compensated by the respective 
term either from I ~ o )  or from (&I. In third order there is only a contribution from the 
closed loops of length four, of the same topology as that discussed above for (StS;). By 
evaluating these terms one finds up to fourth order that 

1+a2[1 - ~ ( z - ~ ) P I + ( ~ ~ ( z - I ) ~ ~ ~ + ( ~ ~ K P ~  
1 + a ~ [ l + 2 ( 2 - 1 ) P ] + a ~ ( 2 - 1 ) ~ P ~ + a 4 K P ~ .  

(Sp:) = 
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As in the case of the king contribution, the higher-order terms follow from longer closed 
loops and can be included in the numerator of equation (A5), and in the normalization factor 
in the denominator. Including them in equations (A4) and (A5) results in equation (1 1). 
Barkowski has pedormed a second-order expansion for the magnetization, as given in 
equation (Al), and an incomplete expansion up to fourth order for the energy of the form 
U71 

(A6) 
J 1 +a2[1 - 2(z - 1)P] + a 4 ( z  - 1)2P2 - 4ya - h y K a Z p 2  Eo = -- 
4 

This formula does not include the closed loop contributions in the king term and in the 
normalization factor, as given in equation (A4). 

A M Ole8 and B Ole8 

1 +a*[1 + Z(z - 1)P] + a4(2 - 1)2P 
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